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Abstract

We present the calculation of the particle drift velocity for a dilute, neutrally buoyant suspension of
spheres under the action of shear when inertia and Brownian e�ects are negligible, resulting from the
e�ect of an imposed concentration gradient. Using a renormalization technique employed previously, we
found that the particle drift velocity hUi is proportional to the concentration gradient Hf through the
relation hUi=ba 2E � Hf+O(fHf ), where a is the radius of the spheres and E is the ¯uid rate of strain,
while b is an O(1) constant that depends on the angular velocity of the ¯uid ¯ow. In particular, b=2.40
for simple shear ¯ow, and b=3.12 for pure straining ¯ow. Finally, combining the expression of the drift
velocity with that of the self-di�usivity, we determined the shear-induced particle volumetric ¯ux and
cross gradient di�usivity for the case of simple shear ¯ow. # 1999 Published by Elsevier Science Ltd.
All rights reserved.
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1. Introduction

In this article we study the shear-induced di�usion of non-Brownian, neutrally buoyant
particles suspended in a viscous ¯uid undergoing shear ¯ow. This phenomenon is responsible,
among others, for the viscous resuspension of heavy particles under the in¯uence of shear
(Leighton and Acrivos, 1986), which has found important applications in the design of super
settlers. The mechanism that is responsible for shear-induced di�usion is well known: particles
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suspended in a viscous ¯uid under conditions in which the ¯ow is laminar and the particle
Reynolds number is vanishingly small tend to move from high collision rate regions to low.
When the shear rate is constant, a test particle appears to undergo a random walk as it
interacts with its neighboring particles, so that the process can be described through a
di�usivity proportion to the shear rate g and the square of the particle radius a. Now, two
di�erent di�usion coe�cients can be de®ned, namely self-di�usivity and gradient di�usivity.
The former is de®ned as the temporal growth rate of the mean square displacement of a
randomly chosen tagged particle in a uniform concentration ®eld, while the latter is the ratio
between mass ¯ux and concentration gradient. These two di�usivities are generally di�erent
from each other whenever the suspended particles interact hydrodynamically. For example,
self- and gradient di�usivities of Brownian particles in a quiescent dilute suspension are equal
to D0(1 ÿ 1.83f ) and D0(1+1.45f ), respectively (Batchelor, 1976), where D0 is the particle
molecular di�usivity and f is the particle volume fraction.
Shear-induced di�usion was ®rst observed experimentally by Eckstein et al. (1977). Later,

quantitative measurements were performed by Leighton and Acrivos (1987a,b), who obtained
values for the shear-induced self-di�usivity which are in qualitative agreement with the
numerical results for monolayer suspensions obtained by Brady and Bossis (1988).
Analytically, shear-induced self-di�usion was studied in the dilute limit by Acrivos et al. (1992)
and by Wang et al. (1996), who determined the di�usion coe�cient in the direction of the ¯uid
velocity and in that perpendicular to it, respectively.
Despite its obvious importance in practical applications, the phenomenon of shear-induced

gradient di�usion appears to have been studied only experimentally, cf. Leighton and Acrivos
(1987a,b) or Phillips et al. (1992), with the result that no analytical expressions currently exist
for the corresponding gradient di�usivity, which have been determined either from
fundamental analysis or from ab initio computations, except for that of a monolayer of
spheres (Wang et al., 1998).
In this work, we derive an expression for the shear-induced drift velocity of a dilute

monodisperse suspension of spheres, that is the mean velocity of a test sphere, due to an
imposed particle concentration gradient at in®nity. In the case of simple shear ¯ow, this leads
us to determine the shear-induced cross gradient di�usivity, which is the ratio between the
particle ¯ux in the direction of the ¯uid velocity and an imposed gradient of the particle
concentration in a direction perpendicular to the ¯uid velocity. To be sure, this so-called
longitudinal di�usion is not very important from a practical standpoint, as any lateral di�usion
would lead to di�erential convection in the streamwise direction, which seems likely to
dominate longitudinal di�usion. However, compared with the calculations of the coe�cient of
transverse shear-induced gradient di�usion (Wang et al. 1998), the analysis that we present
here has the advantage of clarifying the meaning of the drift particle velocity. This is due to
the fact that this calculation is much simpler than that of the transverse di�usivity, involving
only pairwise interactions among the suspended particles, and consequently, as the problem
can be solved analytically, the physical meaning of each term in the expression of the drift
velocity can be clearly pointed out. In addition, as we learned in the study of the self-
di�usivity, which we considered earlier (Acrivos et al., 1992; Wang et al., 1996), solving the
longitudinal case can provide us with the theoretical framework to perform subsequent more
important numerical calculations.
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2. The basic approach

Consider a dilute, monodisperse suspension of force-free and couple-free spherical particles
immersed in a ¯uid with a concentration gradient along the eÃ 2-direction. That means that the
probability density of ®nding a particle at location r=(x1, x2, x3) is equal to n0P(r), with:

P�r� � 1� 1

f0

�
@f
@x2:

�
x2 �1�

Here n is the number density, h@f/@x2i is the imposed mean gradient in the eÃ 2-direction of the
particle volume fraction f � 4

3pa
3n, and the subscript `0' refers to the value of n and f at the

origin. In addition, we assume that the spheres have a radius a small enough that inertia e�ects
can be neglected, while the ¯uid is incompressible, has viscosity m, and undergoes a uniform
shear ¯ow with velocity v(r)=gx2eÃ 1 along the eÃ 1-direction. Clearly, in writing Eq. (1) we have
supposed the particle concentration varies over distances which are large relative to a, or,
conversely, that x2l=f0h@f/@x2iÿ1.
The goal of this calculation is to ®nd the mean volumetric ¯ux J of the suspended particles

in terms of the concentration gradient. In turn, the value of J at the origin depends on the
instantaneous mean velocity hUi of a test sphere at the origin, which is given by:

hUi � n0

�
U�0 j r�P�r j 0� d3r�O�n20�: �2�

Here U(0vr) is the instantaneous velocity of the test sphere at the origin in the presence of a
second sphere at position r, and P(rv0) denotes the normalized conditional probability of
®nding the second sphere at r, provided that the test sphere is located at the origin.
The velocity U(0vr) may be written as:

Ui�0 j r� � 1

2
Ejkxk

�
A�r�xixj

r2
� B�r�

�
dij ÿ xixj

r2

��
�3�

where r=vrv, Ejk � 1
2g�dj1dk2 � dj2dk1� is the uniform rate of strain tensor, while A(r ) and B(r )

are scalar functions of r, decaying as rÿ3 and rÿ5 as r41, respectively (Batchelor and Green,
1972a).
Clearly, Eqs. (2) and (3) show that the mean velocity of the test sphere in a uniformly

distributed suspension, i.e. with P(rv0)=H(r ÿ 2a ), where H is the Heaviside function, is
identically zero, so that hUi is determined only by the deviation of P(rv0) from a constant
value. Now, the conditional probability P(rv0) is not known a priori, as it is the solution of a
two-particle convection problem, and can be determined following the method of Batchelor
and Green (1972b). However, we prefer to defer this calculation to the next section, and here
focus on describing the general method to solve the integral in Eq. (2). Accordingly, we assume
that P(rv0) is a known quantity, referred to as the `unperturbed' conditional probability,
P1(rv0), which is given by:

p1�r j 0� �
"
1� 1

f0

�
@f
@x2

�
x2

#
H�rÿ 2a�: �4�
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Substituting Eqs. (4) and (3) into Eq. (2) we obtain:

hU2i1 � hU3i1 � O�n20� �5�
and

hU1i1 � aga2
�
@f
@x2

�
�6�

with

a � 3

16p

�
r̂r2

(
2�A�r̂� ÿ B�r̂��

�
x̂1x̂2
r̂

�2

�B�r̂�x̂22

)
d3 Ãr �7�

where rÃ =r/a, and we have taken it for granted that the constant term in P1(rv0) does not
contribute to hU1i. The subscript `1' in Eqs. (5) and (6) for the mean velocities refers to the
fact that these quantities are determined via the unperturbed, and not the `exact', conditional
probability distribution. Eq. (5) indicates that, as expected, the transverse drift velocities are
O(f 2

0) quantities, and can be determined only if three-particle interactions are taken into
account. However, since, we are only interested in the O(f0)-terms of the volumetric ¯ux, we
shall concentrate on the determination of hU1i. The main di�culty which must be overcome,
however, is that the integral in Eq. (7) diverges as frÃ drÃ, hence we need to resolve the
singularity through renormalization.
We apply the renormalization procedure developed by Batchelor (1972) to determine hU1i in

Eq. (2). First we follow Batchelor (1972) and by applying Faxen's law let

U�0 j r� � u�0 j r� �
�
a2

6

�
r2u�0 j r� �W�0 j r� �8�

where u(0vr) is the ¯uid velocity at the origin in the presence of a particle at position r, and
W(0vr) is a remainder. Then, considering that the constant term, 1, can be subtracted out from
P1(rÃ v0) (recall that the mean velocity of the test sphere in a uniform suspension is identically
zero), we see on substituting Eq. (8) into Eq. (2) that hU1i1 equals the sum of three
contributions, i.e. hU1i1=I(1)+I(2)+I(3), with

I�1� � n0a
3

�
r̂>2

W1�0 j Ãr��P1�Ãr j 0� ÿ 1� d3 Ãr �9�

I�2� � n0a
3

�
r̂>2

u1�0 j Ãr��P1�Ãr j 0� ÿ 1� d3 Ãr �10�

I�3� � n0
a5

6m

�
r̂>2

@p

@x1
�0 j Ãr��P1�Ãr j 0� ÿ 1� d3 Ãr �11�

where in Eq. (11) p is the ¯uid pressure, and use has been made of the Stokes equation
Hp=mH2u.
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The integral in Eq. (9) is converging, since W1(0vrÃ ) decays like rÃÿ5 as r41. In fact,

W1�0 j Ãr� � 1

2
ga�A 0�r̂� ÿ B 0�r̂�� x̂

2
1x̂2

r̂2
� 1

4
gax̂2B 0�r̂� �12�

where the functions A '(rÃ ) and B '(rÃ ) include only those terms of A(rÃ ) and B(rÃ ) which decay like
rÃÿ6 or faster. Therefore, on substituting Eqs. (12) and (4) into Eq. (9) we obtain:

I�1� � 1

20
ga2
�
@f
@x2

��
r̂>2

�2A 0�r̂� � 3B 0�r̂��r̂4 dr̂ �13�

which, after numerical integration gives:

I�1� � 1:317ga2
�
@f
@x2

�
�14�

The other integrals in Eqs. (10) and (11) are non-absolutely convergent, and can be
renormalized, as was done by Batchelor (1972) for the sedimentation problem, by imposing the
constraints that the ensemble average velocity and pressure gradient at the origin both be zero.
For a dilute suspension these conditions are equivalent to requiring that�

u�0 j Ãr��P�Ãr� ÿ 1� d3 Ãr � 0 �15�

and �
rp�0 j Ãr��P�Ãr� ÿ 1� d3 Ãr � 0 �16�

where u(0vrÃ ) and p(0vrÃ ) are the velocity and pressure at the origin given at a sphere is located at
rÃ . Note that the integrals in Eqs. (15) and (16) are evaluated over the whole space, including
the region 0ErÃE2. Now, subtracting Eq. (15) from Eq. (10) and Eq. (16) from Eq. (11), and
noting that P(rÃ )=P1(rÃ v0) for rÃ>2, [cf. Eqs. (1) and (4)], we obtain:

I�2� � ÿn0a3
�
r̂<2

u1�0 j Ãr��P�Ãr� ÿ 1� d3 Ãr �17�

and

I�3� � ÿn0 a
5

6m

�
r̂<2

@p

@x1
�0 j Ãr��P�Ãr� ÿ 1� d3 Ãr �18�

First, we calculate I(2) by substituting Eq. (1) for P(r) into Eq. (17) and decomposing the
resulting integral as the sum

I�2� � ÿI 0�2� ÿ I0�2� � ÿ3a
4p

�
@f
@x2

���
r̂<1

�
�
1<r̂<2

�
u1�0 j Ãr�x̂2 d3 Ãr �19�

Now, I '
(2) can be easily evaluated considering that, when rÃ < 1, the origin lies within the
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particle located at rÃ , so that, as the particle rotates with angular velocity OOO � ÿ1
2gÃe3, we ®nd:

u(rÃ )=ga[xÃ2eÃ 1+1
2

Ãe3 � Ãr �. Therefore,

I 0�2� � 3

8p
ga2
�
@f
@x2

��
r̂<1

x̂22 d3r � 1

10
ga2
�
@f
@x2

�
�20�

The integral I 0
(2) in Eq. (19) can also be evaluated easily, since the velocity ®eld at the origin

due to the presence of an isolated sphere at rÃ is

u1�Ãr� � 1

2
ga�5x̂21x̂2�r̂ÿ5 ÿ r̂ÿ7� � x̂2r̂

ÿ5� �21�

Consequently, on performing the integration (19) we ®nd I0�2� � 3
4ga

2h@f/@x2i, and summing
I '
(2) and I 0

(2) we obtain:

I�2� � ÿ17
20

ga2
�
@f
@x2

�
�22�

Finally, we turn to evaluating I(3). Substituting Eq. (1) into Eq. (18) and applying the
divergence theorem we obtain:

I�3� � ÿ a2

8pm

�
@f
@x2

��
r̂�2

x̂1x̂2r̂
ÿ1p�Ãr� d2 Ãr �23�

where p(rÃ )=ÿ 5mgxÃ1xÃ2rÃ
ÿ5 is the ¯uid pressure at the origin due to the presence of an isolated

sphere at location rÃ . Performing the integration (23) we ®nd:

I�3� � 1

6
ga2
�
@f
@x2

�
�24�

The same result would be obtained had we replaced Hp with mH2u in Eq. (16), as in Batchelor
(1972). Now, summing Eqs. (14), (22) and (24), we obtain:

hU1i1 � a1ga2
�
@f
@x2

�
�25�

with a1=0.634. In our calculation we have neglected the in¯uence of the hydrodynamic
interactions among three or more particles, so that in Eq. (25) all O (f 2

0)-terms have been
neglected. In addition, as the domain of integration was such that x2Wl=f0h@f/@x2iÿ1, we
have also neglected terms of O(a 2h@f/@x2i2).
The expression (25) for the shear-induced drift velocity in the longitudinal direction for

simple shear ¯ow can be easily generalized to the case where the mean concentration gradient
is a vector hHfi pointing in any direction, and the unperturbed ¯uid velocity ®eld is a general
shear ¯ow, vi(r)=Gijxj. In this case, the antisymmetric part of the velocity gradient tensor,
Oij=(Gij ÿ Gji)/2, corresponds to a rigid body rotation of the suspension and does not
contribute to the translation of the test particle at the origin. Therefore, denoting by
Eij=(Gij+Gji)/2 the rate of strain tensor, on account of the fact that the test particle velocity is
linear in Eij, we can generalize (25) into
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hUii1 � 2a1a2Eij

�
@f
@xj

�
�26�

where, as before, terms of O(f 2) and O(vaHfv2) have been neglected.

3. The `exact' calculation

In this section we apply the basic approach described in the previous section to calculate
`exactly' the longitudinal shear-induced drift velocity. To accomplish that, we need ®rst to
evaluate the conditional probability function P(rv0), which in the previous section had been
assumed known a priori and equal to its unperturbed expression, P1(rv0). In fact the presence
of the test sphere at the origin will alter the particle distribution in the vicinity of the origin,
and so our assumed unperturbed conditional probability cannot be correct.
In the following, P(rv0) will be found by repeating the analysis of Batchelor and Green

(1972b), who determined that quantity in a homogeneous suspension, that is in the absence of
any macroscopic concentration gradients, by evaluating the time-dependent conditional
probability p(r, t )=P(r0+r, t0+tvr0, t0) of ®nding a particle 1, say, at position r0+r at time
t0+t, provided that another particle 2, say, is at position r0 at time t0. This function p, which
depends only on the separation vector r between the two spheres and on the time t, is the
solution of the probability conservation equation:

@p

@t
� r � �Vp� � 0 �27�

with V(r) being the velocity of particle 2 relative to particle 1, subject to the boundary
condition

p�r,t� � p1�r� � 1� 1

f0

r � hrfi �28�

for rwa. In addition, if at time t= ÿ1 the separation vector r between the two particles is
in®nite, then for any material point in r-space which originates from or ends at in®nity we may
consider (28) as being our initial condition as well. Now, on noticing that the radial
component of V has the same dependence on the direction of r as H � V, Batchelor and Green
(1972b) rewrote Eq. (27) as:

1

p

Dp

Dt
� 1

Q

DQ

Dt
�29�

where D/Dt=@/@t+V � H in r-space, while Q=Q(r ) is a function of r only, de®ned through the
following equation:

1

Q

dQ

dr
� 3�Aÿ B�

r�1ÿ A� �
1

1ÿ A

dA

dr
�30�

with A(r ) and B(r ) denoting the scalar functions appearing in Eq. (3). To quote Batchelor and
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Green (1972b), `the meaning of Eq. (29) is that the quantity p/Q is constant for a material
point in r-space whose velocity is given by V'. Hence, since Q(r ) is de®ned within an arbitrary
multiplying constant, we can choose this constant to be unity, so that p=Q along a trajectory
in r-space. Therefore, applying the boundary conditions (28)±(30), we obtain:

p�r,t� � P�r j 0� � q�r�P1�r j 0� �31�

where P1(rv0) is de®ned by Eq. (4), while q(r ), with q(1)=1, is given in Eq. (3.9) of Batchelor
and Green (1972b) as

q�r� � 1

1ÿ A
exp

��1
r

3�Bÿ A�
r�1ÿ A� dr

�
�32�

Consequently, q(r ) can be calculated explicitly. One ®nds that q�r� ÿ 1125
2 r̂
ÿ6 for rÃe3, q(r )1

0.234(rÃÿ 2)ÿ0.781 logÿ0.29 (rÃ ÿ 2)ÿ1 for rÃE2.0025 (see Fig. 1 in Batchelor and Green, 1972b)
while for intermediate values of rÃ, q(r ) has been tabulated in Batchelor and Green (1972b).
In deriving Eqs. (31) and (32) we have assumed that all trajectories originate from in®nity,

but in the case of simple shear ¯ow some trajectories are closed and occupy a region in space
into which open trajectories cannot penetrate. In this region, particle 2 keeps orbiting around
the test sphere inde®nitely, following a trajectory that is symmetric with respect to the origin
(Batchelor and Green, 1972b). Therefore, the mean velocity of the test sphere induced by such
periodically orbiting particles is zero, which means that the volume integral in the expression
(2) for the mean velocity hUi must be evaluated for values of r lying outside the region of
closed trajectories. The same conclusion can be reached by noting that the value of the
conditional probability P(rv0) inside the region of closed trajectories can be determined only if
the history of the suspension is known before the particles have begun to move. Now, for any
such initial particle distribution, after a long time, as the particles keep orbiting the test sphere,
the conditional probability will become symmetric with respect to the (x1, x3)- and (x2, x3)-
planes. Therefore, since the region of closed trajectories is also equally symmetric, the
contribution of these orbiting particles to Eq. (2) is identically zero.
Now, when the expression (31) is substituted into Eq. (2) and the renormalization procedure

described in the previous section is applied, we ®nd again that, as expected, the transverse
shear-induced drift velocities are O(n 2

0)-quantities,

hU2i � hU3i � O�n20� �33�

while the longitudinal drift velocity is the sum of its `unperturbed' value (25) plus two
correction terms,

hU1i � hU1i1 � hU1i 0 ÿ hU1i0 �34�

with

hU1i 0 � n0

�
r̂out

U1�0 j Ãr��P1�Ãr j 0� ÿ 1��q�r� ÿ 1� d3 Ãr �35�
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hU1i0 � n0

�
r̂in

U1�0 j Ãr��P1�Ãr j 0� ÿ 1� d3 Ãr �36�

where the integrations are over the volume exterior [Eq. (35)] and interior [Eq. (36)],
respectively, to the region of closed trajectories. This region is symmetric with respect to the
(x1, x3)-plane as well as with respect to the x2-axis, and is bounded by the surface (Batchelor
and Green, 1972b):

j x̂2 j� f�r̂� �
�

1

F�r̂�
�1
r̂

B�r̂ 0�
1ÿ A�r̂ 0�F�r̂

0�r̂ 0 dr̂ 0
�1

2 �37�

where

F�r̂� � exp

�
ÿ 2

�1
r̂

A�x� ÿ B�x�
1ÿ A�x�

dx
x

�
�38�

The projection of the surface (37) on the (x1, x2)-plane is shown in Fig. 4 of Batchelor and
Green (1972a), representing the trajectory of a particle which, far downstream, lies on the x1-
axis. In view of Eq. (37), such a trajectory has the asymptotic form x̂22 � 16

9 r̂
ÿ3 for rÃw1.

Finally, by taking advantage of the axial symmetry of the surface xÃ2=f(rÃ ), the expression (34)
becomes, when the imposed ¯ow is a simple shear,

hU1i1 � aga2
�
@f
@x2

�
, a � �a1 � a 0 ÿ a0� �39�

where

a 0 � 3

4

�1
r̂min

fA�r̂�G11�g�r̂�� � B�r̂�G12�g�r̂��g�q�r̂� ÿ 1�r̂4 dr̂ �40�

a0 � 3

4

�1
2

fA�r̂�G21�g�r̂�� � B�r̂�G22�g�r̂��gr̂4 dr̂ �41�

where G11�x� � 1
3�1ÿ x3� ÿ 1

5�1ÿ x5�, G12�x� � 1
5�1ÿ x5�, G21�x� � 1

3x
3 ÿ 1

5x
5 and G22 � 1

5x
5.

Here rÃmin=2+4.155� 10ÿ5 is the minimum distance from the origin of the surface (37), such
that f(rÃmin)=rÃmin, while g(rÃ )=f(rÃ )/rÃ, with f(rÃ ) given by Eq. (37). On computing the integrals in
Eqs. (40) and (41), we ®nd a '=0.61320.005 and a0=0.04520.001, with the uncertainty due to
the 1% inaccuracy of the tabulated values of q(r ) in Batchelor and Green (1972b). Finally,
substituting these results into Eq. (39), we obtain:

a � 1:2020:005

Therefore, although the use of the exact probability distribution has almost doubled the
numerical value of the drift velocity, it has not altered the qualitative feature of our main
result, showing that the mean longitudinal drift velocity of the test sphere is proportional to
the mean concentration gradient and is independent of the local concentration.
The case of general shear ¯ow can be solved following the procedure described in the
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previous section, ®nding

hUi � ba2E � rf �42�
where b=2(a1+a 'ÿ a0). Now, however, unlike a1, which is a constant, a ' and a0 will depend
on the particular shear ¯ow considered, since this determines the region of closed trajectories
constituting the domain of integration in Eqs. (40) and (41). More accurately, for two-
dimensional ambient ¯ow ®elds we ®nd that b=b(o ), where o �j det�O� j = j det�G� j, with 0E
oE 1, denoting the relative strength of the rotational component of the shear tensor. For
example, for simple shear ¯ow, i.e. o=1/2, we found that b(1/2)=2.4020.01. In addition, for
o=1, the ¯uid undergoes pure rigid-body rotation and all particle trajectories are closed, so
that we obtain a0=a1, a '=0 and b(1)=0, as expected. Another interesting example is for
o=0, where the ¯uid undergoes pure straining ¯ow. In this case, all the trajectories of one
sphere relative to another originate from in®nity and are open; hence a0=0, while a ' in Eq.
(40) is evaluated with g(rÃ )=0, with the result that, now, a '=0.924 and b(0)=3.1220.01.

4. Conclusions

We have presented the exact analytical calculation of the particle drift velocity hUi for a
dilute, neutrally buoyant suspension of spheres under the action of shear, due to the e�ect of
an imposed concentration gradient. We found that hUi is proportional to the concentration
gradient Hf through the relation hUi=ba 2E�Hf+O(fHf ), where a is the radius of the spheres
and E is the ¯uid rate of strain, while b is an O(1) constant that depends on the angular
velocity of the ¯uid ¯ow. In particular, b=2.40 for simple shear ¯ow, and b=3.12 for pure
straining ¯ow. Now, the volumetric particle ¯ux J at location r is related to the particle drift
velocity through the following equality:

J � �hUi � v�r��fÿ Ds � rf �43�
where v(r) is the unperturbed ¯uid velocity, while Ds is the self di�usivity tensor. This, in turn,
is equal to the temporal growth rate of the second moment of the particle displacement, i.e.

Ds � lim
Dt41

hDXDXi
2Dt

�44�

with DX denoting the net displacement of the test sphere in a macroscopically homogeneous
suspension during a time interval Dt. In the case of simple shear ¯ow v(r)=gx2eÃ 1, and when a
concentration gradient is imposed along the eÃ 2-direction, the longitudinal particle ¯ux at the
origin is J1=f0hU1iÿD s

12h@f/@x2i . Therefore, since hDX1DX2i=O(f 2), we obtain, up to terms
of O(f 2) and O(vaHfv2),

J1 � ÿD12

�
@f
@x2

�
�45�

where
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D12 � ÿ1:20ga2f0 �46�
is the particle shear-induced cross gradient di�usivity.
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